metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊1F5, (C4×C20)⋊1C4, (C2×D20)⋊3C4, C5⋊1(C42⋊C4), C20⋊4D4.1C2, (C22×D5).7D4, D10.D4⋊1C2, C10.1(C23⋊C4), (C2×D20).1C22, C22.8(C22⋊F5), C2.4(D10.D4), (C2×C4).49(C2×F5), (C2×C20).95(C2×C4), (C2×C10).8(C22⋊C4), SmallGroup(320,191)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊F5
G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, dbd-1=a2b, dcd-1=c3 >
Subgroups: 666 in 86 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, D5, C10, C10, C42, C22⋊C4, C2×D4, C20, F5, D10, C2×C10, C23⋊C4, C4⋊1D4, D20, C2×C20, C2×C20, C2×F5, C22×D5, C22×D5, C42⋊C4, C4×C20, C22⋊F5, C2×D20, C2×D20, D10.D4, C20⋊4D4, C42⋊F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C23⋊C4, C2×F5, C42⋊C4, C22⋊F5, D10.D4, C42⋊F5
Character table of C42⋊F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5 | 10A | 10B | 10C | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 20K | 20L | |
size | 1 | 1 | 2 | 20 | 20 | 40 | 4 | 4 | 4 | 40 | 40 | 40 | 40 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from C42⋊C4 |
ρ13 | 4 | 4 | 4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ14 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | orthogonal lifted from C42⋊C4 |
ρ15 | 4 | 4 | 4 | 0 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ16 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | √5 | -√5 | 1 | -√5 | √5 | √5 | -√5 | 1 | 1 | 1 | -√5 | √5 | orthogonal lifted from C22⋊F5 |
ρ17 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -√5 | √5 | 1 | √5 | -√5 | -√5 | √5 | 1 | 1 | 1 | √5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | √5 | -√5 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ54+2ζ4ζ53+ζ4 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | orthogonal faithful |
ρ19 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | -√5 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | √5 | √5 | -√5 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | orthogonal lifted from D10.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | √5 | -√5 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ52+2ζ4ζ5+ζ4 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | orthogonal faithful |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | -√5 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | √5 | √5 | -√5 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | orthogonal lifted from D10.D4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | √5 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | -√5 | -√5 | √5 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | orthogonal lifted from D10.D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -√5 | √5 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ54+2ζ43ζ52+ζ43 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -√5 | √5 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | 2ζ43ζ53+2ζ43ζ5+ζ43 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | √5 | -√5 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | 2ζ4ζ52+2ζ4ζ5+ζ4 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -√5 | √5 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ53+2ζ43ζ5+ζ43 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | orthogonal faithful |
ρ27 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | √5 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ52+ζ43 | -√5 | -√5 | √5 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ53+ζ4 | orthogonal lifted from D10.D4 |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | √5 | -√5 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | 2ζ4ζ54+2ζ4ζ53+ζ4 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | 2ζ43ζ53+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ52+ζ43 | 2ζ4ζ52+2ζ4ζ5+ζ4 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -√5 | √5 | ζ4ζ53-ζ4ζ52-ζ53-ζ52-1 | -ζ43ζ54+ζ43ζ5-ζ54-ζ5-1 | 2ζ43ζ54+2ζ43ζ52+ζ43 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | 2ζ4ζ54+2ζ4ζ53+ζ4 | 2ζ4ζ52+2ζ4ζ5+ζ4 | 2ζ43ζ53+2ζ43ζ5+ζ43 | ζ43ζ54-ζ43ζ5-ζ54-ζ5-1 | -ζ4ζ53+ζ4ζ52-ζ53-ζ52-1 | orthogonal faithful |
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 33 11 23)(2 35 15 21)(3 32 14 24)(4 34 13 22)(5 31 12 25)(6 38 16 28)(7 40 20 26)(8 37 19 29)(9 39 18 27)(10 36 17 30)
G:=sub<Sym(40)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33,11,23)(2,35,15,21)(3,32,14,24)(4,34,13,22)(5,31,12,25)(6,38,16,28)(7,40,20,26)(8,37,19,29)(9,39,18,27)(10,36,17,30)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33,11,23)(2,35,15,21)(3,32,14,24)(4,34,13,22)(5,31,12,25)(6,38,16,28)(7,40,20,26)(8,37,19,29)(9,39,18,27)(10,36,17,30) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,33,11,23),(2,35,15,21),(3,32,14,24),(4,34,13,22),(5,31,12,25),(6,38,16,28),(7,40,20,26),(8,37,19,29),(9,39,18,27),(10,36,17,30)]])
Matrix representation of C42⋊F5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
20 | 24 | 39 | 13 |
26 | 30 | 28 | 2 |
30 | 28 | 0 | 0 |
22 | 11 | 0 | 0 |
37 | 2 | 39 | 13 |
21 | 23 | 28 | 2 |
40 | 40 | 0 | 0 |
8 | 7 | 0 | 0 |
37 | 0 | 40 | 35 |
36 | 36 | 6 | 35 |
11 | 9 | 20 | 20 |
7 | 18 | 1 | 3 |
27 | 13 | 28 | 18 |
0 | 8 | 20 | 25 |
G:=sub<GL(4,GF(41))| [40,0,20,26,0,40,24,30,0,0,39,28,0,0,13,2],[30,22,37,21,28,11,2,23,0,0,39,28,0,0,13,2],[40,8,37,36,40,7,0,36,0,0,40,6,0,0,35,35],[11,7,27,0,9,18,13,8,20,1,28,20,20,3,18,25] >;
C42⋊F5 in GAP, Magma, Sage, TeX
C_4^2\rtimes F_5
% in TeX
G:=Group("C4^2:F5");
// GroupNames label
G:=SmallGroup(320,191);
// by ID
G=gap.SmallGroup(320,191);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,120,219,1571,297,136,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations
Export